Course Type	Course Code	Name of Course	L	Т	Р	Credit
DE	NFMD505	Advanced Materials and Applications	3	0	0	3

Prerequisites: Students with B Tech

inMetallurgy/Materials/Mechanical/Production/Chemical/Electrical/ Mineral/Mining or BSc/MSc in Chemistry/Physics

Course Objective														
Т	he	main	objective	of	the	course	is	to	understand	various	advanced	materials,	their	processing,
microstructure, and properties														
Learning Outcomes														

Upon completion of this course, students will be able to

- Identify the advanced materials used for various applications
- Understanding the physical metallurgy of advanced materials
- Design new materials for future applications
- Learn the properties and microstructural characteristics of materials

Uni t No.	Topics to be Covered	Lecture Hours	Learning Outcome
1	Structure of Materials, Advances in ferrous and non-ferrous alloys	8	Students will learn an overview of the subject, details of ferrous and non-ferrous materials
2	Advanced Aluminium alloys, Shape memory alloys	8	Students will learn about the light weight alloys, shape memory alloys, and their properties
3	High-temperature materials- properties, structure, and applications, Superalloys- Fe-based, Ni-based, and Co-based alloys.	8	Students will learn about the high- temperature materials and their properties
4	High Entropy alloys, Ti-based alloys	6	Students will learn about the High entropy design strategies and advances in Ti alloys
3	Ceramics- structure and properties, Introduction to polymers, Composites and <i>In-situ</i> composites, Energy materials (fuel cells, batteries, energy storage systems, etc.),	4	Students will learn about the polymers, composites, ceramics, and their properties
4	Magnetic materials-properties and applications, Nanomaterials—synthesis, processing, and applications	5	Students will learn about the nanomaterials, magnetic materials, and their properties and synthesis
5	Materials Selection and Design Considerations, Introduction to Material Informatics and data-driven science, Application of machine learning in material design and development	3	Students will learn about the application of machine learning in alloy design and materials informatics
	Total	42	

Text Books:

- 1. Physical Metallurgy Principles, Reza Abbaschian, Lara Abbaschian, Robert E. Reed-Hill, Cengage Learning, Fourth Edition
- 2. Materials Science and Engineering, W.D. Callister, David G. Rethwisch, John Wiley & Sons, New York, USA, Tenth Edition.
- 3. Principles of Materials Science and Engineering, William F. Smith, McGraw-Hill, Fifth Indian Edition, New Delhi, 2017.

Reference Books:

- 1. Nanotechnology: A Gentle Introduction to the Next Big Idea, Mark Ratner and Daniel Ratner, Pearson Education, First Edition
- Titanium, G. Lütjering, J.C. Williams, Second edition, Springer (2007)
 The Superalloys Fundamentals and Applications, R.C. Reed, Cambridge University Press (2006)